首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21991篇
  免费   2794篇
  国内免费   1417篇
电工技术   927篇
技术理论   1篇
综合类   1548篇
化学工业   6514篇
金属工艺   2061篇
机械仪表   1337篇
建筑科学   1407篇
矿业工程   414篇
能源动力   512篇
轻工业   1013篇
水利工程   580篇
石油天然气   1231篇
武器工业   164篇
无线电   1570篇
一般工业技术   3058篇
冶金工业   1137篇
原子能技术   92篇
自动化技术   2636篇
  2024年   52篇
  2023年   308篇
  2022年   457篇
  2021年   714篇
  2020年   737篇
  2019年   727篇
  2018年   690篇
  2017年   870篇
  2016年   965篇
  2015年   952篇
  2014年   1371篇
  2013年   1373篇
  2012年   1518篇
  2011年   1637篇
  2010年   1186篇
  2009年   1366篇
  2008年   1205篇
  2007年   1455篇
  2006年   1406篇
  2005年   1015篇
  2004年   951篇
  2003年   868篇
  2002年   723篇
  2001年   574篇
  2000年   499篇
  1999年   449篇
  1998年   375篇
  1997年   319篇
  1996年   197篇
  1995年   219篇
  1994年   161篇
  1993年   121篇
  1992年   122篇
  1991年   101篇
  1990年   79篇
  1989年   66篇
  1988年   33篇
  1987年   33篇
  1986年   25篇
  1985年   36篇
  1984年   32篇
  1983年   18篇
  1982年   41篇
  1981年   13篇
  1980年   10篇
  1979年   19篇
  1978年   8篇
  1964年   12篇
  1957年   11篇
  1956年   8篇
排序方式: 共有10000条查询结果,搜索用时 30 毫秒
11.
摘要:为了研究300M超高强钢在中性盐雾环境中的腐蚀行为及腐蚀机制,采用失重法,宏观、微观腐蚀形貌分析,三维表面轮廓分析及电化学分析的研究方法,来表征腐蚀实验现象并进行分析。结果表明:300M超高强钢在中性盐雾环境中的腐蚀产物为FeOOH、Fe2O3、Fe(OH)3和Fe3O4;腐蚀速率随着腐蚀时间逐渐降低,腐蚀后期(72h)腐蚀速率降低50%;腐蚀初期以点蚀为主,点蚀坑通过横向扩展,逐渐发展为后期的均匀腐蚀,腐蚀表面形貌呈沟壑状;外腐蚀层对基体的保护能力很弱,Cr元素在锈层靠近基体的一侧偏聚使内腐蚀层具有一定的抗腐蚀性。  相似文献   
12.
以柠条为原料,分析了其化学组分和纤维形态,并探讨了柠条双螺杆CMP法的制浆工艺以及浆料的纤维形态和成纸的物理性能。研究结果表明:与针、阔叶木相比,柠条原料中纤维素和综纤维素质量分数较低,苯醇抽出物和热水抽出物质量分数较高,柠条纤维长度总体偏短,木质部和皮部的纤维质量平均长度分别为0.621和0.819 mm,还存在部分杂细胞。采用3.5% Na2SO3和1.5% NaOH常温预浸12 h、90℃汽蒸1 h后再用双螺杆挤浆机在质量分数35%下进行搓丝,并结合高浓盘磨机磨浆,所得CMP浆得率可达73%。柠条CMP浆基本保持了纤维原有的长度,质量平均长度达0.650 mm,长宽比为32.7,纤维解离较好,但分丝帚化情况不理想,含有部分纤维束和杂细胞。当加拿大游离度为300 mL时,柠条CMP浆成纸的环压强度指数和松厚度较高,分别为8.67(N·m)/g和2.56 cm3/g,抗张指数为19.6(N·m)/g,本色浆白度较高,达50%(ISO)。柠条CMP浆适合配抄瓦楞原纸等包装用纸,漂白后可配抄新闻纸和白板纸。  相似文献   
13.
Many occupations require workers to stand for long periods of time without proper interventions, which causes discomfort in the back and lower limbs. Therefore, this study aims to assess the effectiveness in alleviating body muscle discomfort during prolonged standing through the use of a calf massager. This study was conducted among male workers at a manufacturer with production line workers and the list was obtained from the HR Department and simple random sampling was done by number categorization. A total of 100 respondents (50 respondents for both the control and the experimental groups) participated in this study. The experiment took place in a room with a similar setup for the production line. Each respondent was requested to perform the simulated task for 2 hr. For the experimental group, the calf massager was turned on every 15 min. At every 15‐min interval after turning on the calf massager, respondents from both groups were required to evaluate their discomfort level on a Borg's scale CR‐10 questionnaire. The results showed that the level of body discomfort among respondents in the experimental group reduced (20–30%) compared with that of the control group. Multivariate analysis results revealed that the discomfort rating for the lower back, knees, thighs, calves, and feet was significantly lower (p < .05) among the experimental group compared with the control group. For lower body parts, the lower back region was statistically significant (p < .05) at the 90th, 105th, and 120th min; the thigh region was statistically significant (p < .05) at the 120th min; the knee region was statistically significant (p < .05) at the 105th and 120th min; the calf region was statistically significant (p < .05) at all minute intervals except the 15th and 45th min, while the feet region, was statistically significant at the 105th and 120th min. Therefore, this study indicates that calf massage treatment is capable of reducing body muscle discomfort during prolonged standing and highlights the significance of calf massage.  相似文献   
14.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
15.
The chromium (Cr) evaporation behavior of several different types of iron (Fe)-based AFA alloys and benchmark Cr2O3-forming Fe-based 310 and Ni-based 625 alloys was investigated for 500 h exposures at 800 °C to 900 °C in air with 10% H2O. The Cr evaporation rates from alumina-forming austenitic (AFA) alloys were ~5 to 35 times lower than that of the Cr2O3-forming alloys depending on alloy and temperature. The Cr evaporation behavior was correlated with extensive characterization of the chemistry and microstructure of the oxide scales, which also revealed a degree of quartz tube Si contamination during the test. Long-term oxidation kinetics were also assessed at 800 to 1000 °C for up to 10,000 h in air with 10% H2O to provide further guidance for SOFC BOP component alloy selection.  相似文献   
16.
This review paper deals with the overall crystallization behavior of polyethylene/wax blends as phase change materials (PCMs) for thermal energy storage with the determination of their thermal properties. The addition of molten wax to the polyethylenes decreases the crystallization and melting temperatures of the blends. However, incorporating fillers to the polyethylene/wax blends can either decrease or increase the crystallization and melting temperatures of the composites depending on the filler type. The normalized enthalpy values of linear low-density polyethylene showed no significant change when increasing the wax content. On the contrary, the normalized enthalpy values of the wax in the blends were lesser than that of pure wax and increased with increasing wax content. Since the wax in the blend had a lower crystallinity compared to pure wax, this influences its effectiveness as a PCM for thermal energy storage. The effect of different polyethylenes on the wax morphology gave rise to enhance phase separation when wax was blended to high-density polyethylene as compared to the other polyethylenes. On the contrary, the effect of various waxes on the morphology of polyethylene resulted in different morphologies due to the molecular weight of the wax used and the structure of the polyethylene chain. The addition of fillers to the polyethylene (PE)/wax samples resulted in enhanced phase separation. The overall isothermal crystallization rate and the equilibrium melting temperature of PEs in the PEs/wax blends were depressed by wax addition due to the wax dilution effect.  相似文献   
17.
如何在复杂背景下持续有效地检测目标位置,一直是研究者们需要面对的主要挑战。本文在研究红外点状移动目标特征的基础上,根据目标无纹理,无形状的特性,提出一种改进的形态学目标增强算法,并利用目标连续时空不变性检测目标。首先,建立多尺度的图像金字塔,在每层上采用改进的形态学算法快速、粗糙定位小目标。然后进一步的根据目标在时空上的位置相关性,提出基于目标运动特征分析的精确检测方法。得到精确稳定的检测结果。最后实验结果表明与经典的形态学检测算法及其他算法相比,该技术能更有效地检测弱小目标,具有更高的鲁棒性。  相似文献   
18.
The polyamide 6-polyurethane copolymer (PA6-b-PU-b-PA6) was synthesized through anionic suspension polymerization and then mixed with polyamide 6/thermoplastic polyurethane (PA6/TPU) and polyamide 6, 6/thermoplastic polyurethane (PA66/TPU) blends using as the compatibilizer. The results show that the PA6-b-PU-b-PA6 copolymers powders several can be obtained through suspension polymerization using dimethicone as disperse medium. The average diameter of PA6-b-PU-b-PA6 copolymer powders decreased with the increasing of PU content. With the addition of PA6-b-PU-b-PA6, the TPU phase dispersed more uniformly in PA6 or PA66 matrix, and the size of TPU dispersed phase decreased obviously. The PA6-b-PU-b-PA6 copolymer with higher PU content shows better compatibilizing effect. Addition of PA6-b-PU-b-PA6 can improve both strength and toughness of the PA/TPU blends. When the amount of PA6-PU25% copolymer was 5 phr, the tensile strength and notched impact strength of PA6/TPU/PA6-PU25% blends increased 29 and 159.4%, respectively, compared to the PA6/TPU blend without compatibilizer.  相似文献   
19.
Saw-tooth chip changes from macroscopically continuous ribbon to separated segments with the increase of cutting speed. The aim of this study is to find the correlations between chip morphology and machined surface micro-topography at different chip serration stages encountered in high speed cutting. High strength alloy steel AerMet100 was employed in orthogonal cutting experiments to obtain chips at different serration stages and corresponding machined surfaces. The chips and machined surfaces obtained were then examined with optical microscope (OM), scanning electron microscope (SEM), and white light interferometer (WLI). The result shows that chip serration causes micro-waves on machined surface, which increases machined surface roughness. However, wave amplitudes (surface roughness) at different serration stages are different. The principal factor influencing wave amplitude is the thickness of the sawed segment (tooth) of saw-tooth chip. With cutting parameters in this study, surface roughness contributed by chip serration ranges from 0.39 μm to 1.85 μm. This may bring on serious problems in the case of trying to replace grinding with high-speed cutting in rough machining. Some suggestions have been proposed to control the chip serration-caused surface roughness in high-speed cutting based on the results of the current study.  相似文献   
20.
In the context of industrial buildings and power plants, electrical installations and cable trays represent a main fuel load and a potential initial fire source due to possible short circuits or comparable malfunction. Furthermore, a fire can spread from one tray to additional trays mounted above and/or horizontally on one tray. Because of the high significance of cable fires, several research projects have been carried out, investigating the fire behaviour of cables from small‐scale tests, eg, the cone calorimeter, up to large‐scale tests, analysing complete cable tray constructions. The goal of the work presented in this paper is the extension of the knowledge regarding the influence of geometrical parameters like the packing density and tray distance on the burning behaviour and fire spread of cable tray installations. The results are considered, together with test results from the literature, to quantify the main physical parameters describing the burning behaviour. In a next step, the general applicability of these parameters as input data for the parametrization of the source term of numerical simulations is shown. The test results show that the burning behaviour and the fire spreading highly depend on the cable arrangement of the cables on the cable tray, in combination with other boundary conditions. By applying the results as input for a fire simulation, the mass loss rate is considered appropriately.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号